A Lógica Fuzzy (Lógica Nebulosa) viola estas suposições. Um sim ou um não como resposta a estas questões é, na maioria das vezes, incompleta. Na verdade, entre a certeza de ser e a certeza de não ser, existem infinitos graus de incerteza. Esta imperfeição intrínseca à informação representada numa linguagem natural tem sido tratada matematicamente no passado com o uso da teoria das probabilidades. Contudo, a Lógica Fuzzy (Nebulosa), com base na teoria dos Conjuntos Fuzzy (Nebulosos), tem se mostrado mais adequada para tratar imperfeições da informação do que a teoria das probabilidades.
A Lógica Fuzzy encontra-se entre as técnicas mais recentes de Inteligência Artificial, também conhecida como Conjuntos Fuzzy. Este termo, a princípio, nos convida a pensar em algo confuso (nebuloso), porém, atualmente, é bastante direto. Essa técnica, muito usada no Japão, é fruto da tão esperada quinta geração dos computadores, uma geração que morreu antes mesmo de nascer.
A Lógica Fuzzy consiste em aproximar a decisão computacional da decisão humana, tornando as máquinas mais capacitadas a seu trabalho. Isto é feito de forma que a decisão de uma máquina não se resuma apenas a um “sim” ou um “não”, mas também tenha decisões “abstratas”, do tipo “um pouco mais”, “talvez sim”, e outras tantas variáveis que representem as decisões humanas. É um modo de interligar inerentemente processos analógicos que deslocam-se através de uma faixa contínua para um computador digital que podem ver coisas com valores numéricos bem definidos
(valores discretos).
Uma das principais potencialidades da Lógica Fuzzy, quando comparada com outros esquemas que tratam com dados imprecisos como redes neurais, é que suas bases de conhecimento, as quais estão no formato de regras de produção, são fáceis de examinar e entender. Este formato de regra também torna fácil a manutenção e a atualização da base de conhecimento.
Comentários
Postar um comentário